优质中文开源软件代码项目资源技术共享平台
传播开源的理念,推广开源项目
学习是对自己最棒的投资!与君共勉!

网站首页 > 主流语言 > python 正文

pytorch中常用的损失函数用法说明

longtao100 2021-07-12 python 296 ℃ 0 评论

1. pytorch中常用的损失函数列举

pytorch中的nn模块提供了很多可以直接使用的loss函数, 比如MSELoss(), CrossEntropyLoss(), NLLLoss() 等

官方链接: https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html

pytorch中常用的损失函数
损失函数名称适用场景
torch.nn.MSELoss()均方误差损失回归
torch.nn.L1Loss()平均绝对值误差损失回归
torch.nn.CrossEntropyLoss()交叉熵损失多分类
torch.nn.NLLLoss()负对数似然函数损失多分类
torch.nn.NLLLoss2d()图片负对数似然函数损失图像分割
torch.nn.KLDivLoss()KL散度损失回归
torch.nn.BCELoss()二分类交叉熵损失二分类
torch.nn.MarginRankingLoss()评价相似度的损失
torch.nn.MultiLabelMarginLoss()多标签分类的损失多标签分类
torch.nn.SmoothL1Loss()平滑的L1损失回归
torch.nn.SoftMarginLoss()多标签二分类问题的损失

多标签二分类

2. 比较CrossEntropyLoss() 和NLLLoss()

(1). CrossEntropyLoss():

torch.nn.CrossEntropyLoss(weight=None,   # 1D张量,含n个元素,分别代表n类的权重,样本不均衡时常用
                          size_average=None, 
                          ignore_index=-100, 
                          reduce=None, 
                          reduction='mean' )

参数:

weight: 1D张量,含n个元素,分别代表n类的权重,样本不均衡时常用, 默认为None.

计算公式:

weight = None时:

weight ≠ None时:

输入:

output: 网络未加softmax的输出

target: label值(0,1,2 不是one-hot)

代码:

loss_func = CrossEntropyLoss(weight=torch.from_numpy(np.array([0.03,0.05,0.19,0.26,0.47])).float().to(device) ,size_average=True)
loss = loss_func(output, target)

(2). NLLLoss():

torch.nn.NLLLoss(weight=None, 
                size_average=None, 
                ignore_index=-100,
                reduce=None, 
                reduction='mean')

输入:

output: 网络在logsoftmax后的输出

target: label值(0,1,2 不是one-hot)

代码:

loss_func = NLLLoss(weight=torch.from_numpy(np.array([0.03,0.05,0.19,0.26,0.47])).float().to(device) ,size_average=True)
loss = loss_func(output, target)


(3). 二者总结比较:

总之, CrossEntropyLoss() = softmax + log + NLLLoss() = log_softmax + NLLLoss(), 具体等价应用如下:

####################---CrossEntropyLoss()---#######################
 
loss_func = CrossEntropyLoss()
loss = loss_func(output, target)
 
####################---Softmax+log+NLLLoss()---####################
 
self.softmax = nn.Softmax(dim = -1)
 
x = self.softmax(x)
output = torch.log(x)
 
loss_func = NLLLoss()
loss = loss_func(output, target)
 
####################---LogSoftmax+NLLLoss()---######################
 
self.log_softmax = nn.LogSoftmax(dim = -1)
 
output = self.log_softmax(x)
 
loss_func = NLLLoss()
loss = loss_func(output, target)

补充:常用损失函数用法小结之Pytorch框架

在用深度学习做图像处理的时候,常用到的损失函数无非有四五种,为了方便Pytorch使用者,所以简要做以下总结

1)L1损失函数

预测值与标签值进行相差,然后取绝对值,根据实际应用场所,可以设置是否求和,求平均,公式可见下,Pytorch调用函数:nn.L1Loss

2)L2损失函数

预测值与标签值进行相差,然后取平方,根据实际应用场所,可以设置是否求和,求平均,公式可见下,Pytorch调用函数:nn.MSELoss

3)Huber Loss损失函数

简单来说就是L1和L2损失函数的综合版本,结合了两者的优点,公式可见下,Pytorch调用函数:nn.SmoothL1Loss

4)二分类交叉熵损失函数

简单来说,就是度量两个概率分布间的差异性信息,在某一程度上也可以防止梯度学习过慢,公式可见下,Pytorch调用函数有两个,一个是nn.BCELoss函数,用的时候要结合Sigmoid函数,另外一个是nn.BCEWithLogitsLoss()

5)多分类交叉熵损失函数

也是度量两个概率分布间的差异性信息,Pytorch调用函数也有两个,一个是nn.NLLLoss,用的时候要结合log softmax处理,另外一个是nn.CrossEntropyLoss

以上为个人经验,希望能给大家一个参考,也希望大家多多支持开源网。

Tags:pytorch损失函数

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

请填写验证码
开源分类
最近发表
开源网标签
开源网归档